364 research outputs found

    Covariant Quantization of Superstrings Without Pure Spinor Constraints

    Get PDF
    We construct a covariant quantum superstring, extending Berkovits' approach by introducing new ghosts to relax the pure spinor constraints. The central charge of the underlying Kac-Moody algebra, which would lead to an anomaly in the BRST charge, is treated as a new generator with a new b-c system. We construct a nilpotent BRST current, an anomalous ghost current and an anomaly-free energy-momentum tensor. For open superstrings, we find the correct massless spectrum. In addition, we construct a Lorentz invariant B-field to be used for the computation of the integrated vertex operators and amplitudes.Comment: 30 page

    Four dimensional "old minimal" N=2 supersymmetrization of R^4

    Get PDF
    We write in superspace the lagrangian containing the fourth power of the Weyl tensor in the "old minimal" d=4, N=2 supergravity, without local SO(2) symmetry. Using gauge completion, we analyze the lagrangian in components. We find out that the auxiliary fields which belong to the Weyl and compensating vector multiplets have derivative terms and therefore cannot be eliminated on-shell. Only the auxiliary fields which belong to the compensating nonlinear multiplet do not get derivatives and could still be eliminated; we check that this is possible in the leading terms of the lagrangian. We compare this result to the similar one of "old minimal" N=1 supergravity and we comment on possible generalizations to other versions of N=1,2 supergravity.Comment: 31 pages, no figures. Minor corrections. Details of the full calculation included as an appendix. Reference adde

    A twistor-like D=10 superparticle action with manifest N=8 world-line supersymmetry

    Full text link
    We propose a new formulation of the D=10D=10 Brink-Schwarz superparticle which is manifestly invariant under both the target-space super-Poincar\'e group and the world-line local N=8N=8 superconformal group. This twistor-like construction naturally involves the sphere S8S^8 as a coset space of the D=10D=10 Lorentz group. The action contains only a finite set of auxiliary fields, but they appear in unusual trilinear combinations. The origin of the on-shell D=10D=10 fermionic κ\kappa symmetry of the standard Brink-Schwarz formulation is explained. The coupling to a D=10D=10 super-Maxwell background requires a new mechanism, in which the electric charge appears only on shell as an integration constant.Comment: 22pages, standard LATEX fil

    A New First Class Algebra, Homological Perturbation and Extension of Pure Spinor Formalism for Superstring

    Full text link
    Based on a novel first class algebra, we develop an extension of the pure spinor (PS) formalism of Berkovits, in which the PS constraints are removed. By using the homological perturbation theory in an essential way, the BRST-like charge QQ of the conventional PS formalism is promoted to a bona fide nilpotent charge Q^\hat{Q}, the cohomology of which is equivalent to the constrained cohomology of QQ. This construction requires only a minimum number (five) of additional fermionic ghost-antighost pairs and the vertex operators for the massless modes of open string are obtained in a systematic way. Furthermore, we present a simple composite "bb-ghost" field B(z)B(z) which realizes the important relation T(z)={Q^,B(z)}T(z) = \{\hat{Q}, B(z)\} , with T(z)T(z) the Virasoro operator, and apply it to facilitate the construction of the integrated vertex. The present formalism utilizes U(5) parametrization and the manifest Lorentz covariance is yet to be achieved.Comment: 38 pages, no figure. Proof of triviality of delta-homology improved and a reference adde

    Ground and excited states Gamow-Teller strength distributions of iron isotopes and associated capture rates for core-collapse simulations

    Full text link
    This paper reports on the microscopic calculation of ground and excited states Gamow-Teller (GT) strength distributions, both in the electron capture and electron decay direction, for 54,55,56^{54,55,56}Fe. The associated electron and positron capture rates for these isotopes of iron are also calculated in stellar matter. These calculations were recently introduced and this paper is a follow-up which discusses in detail the GT strength distributions and stellar capture rates of key iron isotopes. The calculations are performed within the framework of the proton-neutron quasiparticle random phase approximation (pn-QRPA) theory. The pn-QRPA theory allows a microscopic \textit{state-by-state} calculation of GT strength functions and stellar capture rates which greatly increases the reliability of the results. For the first time experimental deformation of nuclei are taken into account. In the core of massive stars isotopes of iron, 54,55,56^{54,55,56}Fe, are considered to be key players in decreasing the electron-to-baryon ratio (YeY_{e}) mainly via electron capture on these nuclide. The structure of the presupernova star is altered both by the changes in YeY_{e} and the entropy of the core material. Results are encouraging and are compared against measurements (where possible) and other calculations. The calculated electron capture rates are in overall good agreement with the shell model results. During the presupernova evolution of massive stars, from oxygen shell burning stages till around end of convective core silicon burning, the calculated electron capture rates on 54^{54}Fe are around three times bigger than the corresponding shell model rates. The calculated positron capture rates, however, are suppressed by two to five orders of magnitude.Comment: 18 pages, 12 figures, 10 table

    Interconnections between type II superstrings, M theory and N=4 supersymmetric Yang--Mills

    Get PDF
    These lecture notes begin with a review of the first nonleading contributions to the derivative expansion of the M theory effective action compactified on a two-torus. The form of these higher-derivative interactions is shown to follow from ten-dimensional type IIB supersymmetry as well as from one-loop quantum corrections to classical eleven-dimensional supergravity. The detailed information concerning D-instanton effects encoded in these terms is related to the problem of evaluating the Witten index for NN D-particles in the type IIA theory. Using the AdS/CFT conjecture, it also leads to very specific predictions of multi-instanton contributions in N=4\cal N=4 supersymmetric SU(N) Yang--Mills theory in the limit of strong 't Hooft coupling. [Extended version of lectures given at 22nd Johns Hopkins Workshop (Gothenberg, August 20-22 1998); `Quantum Aspects of Gauge Theories, Supersymmetry and Unification', TMR meeting (Corfu, September 20-26 1998); Andrjewski lectures (Berlin, November 1-6 1998).]Comment: 80 pages, LaTe

    Relating Green-Schwarz and Extended Pure Spinor Formalisms by Similarity Transformation

    Full text link
    In order to gain deeper understanding of pure-spinor-based formalisms of superstring, an explicit similarity transformation is constructed which provides operator mapping between the light-cone Green-Schwarz (LCGS) formalism and the extended pure spinor (EPS) formalism, a recently proposed generalization of the Berkovits' formalism in an enlarged space. By applying a systematic procedure developed in our previous work, we first construct an analogous mapping in the bosonic string relating the BRST and the light-cone formulations. This provides sufficient insights and allows us to construct the desired mapping in the more intricate case of superstring as well. The success of the construction owes much to the enlarged field space where pure spinor constraints are removed and to the existence of the ``B-ghost'' in the EPS formalism.Comment: 37pages, no figur
    corecore